東日本大震災における新聞記事及 び標高データを用いた津波浸水域 の推定

五味 千絵子*・葛葉 泰久*

Estimation of Tsunami Inundation Areas with Newspaper Articles and altitude data in the Great East Japan Earthquake

Chieko Gomi* and Yasuhisa Kuzuha*

Abstract

In this paper, we propose a new method to estimate tsunami inundation areas using newspaper articles and elevation data. We regarded some information in each article as observation data and we estimated the inundation areas using two-dimensional spline interpretation. Next, we assumed that inundation areas estimated using conventional methods are true values. And then, we confirmed the consistency between the inundation areas estimated using our method and true values which are estimated using the remote sensing and the field investigation. We obtained the following results: (1) The new method is sufficiently useful, but (2) the method has some faults. The consistency was quite low in some areas, mainly because of low-resolution elevation data or low-resolution observation data (articles). Finally, we demonstrated a means to overcome the faults and to improve consistency.

キーワード:東日本大震災、津波浸水域、新聞記事、人工物、GIS

Key words: the Great East Japan Earthquake, tsunami inundation areas, newspaper articles, artificial objects, GIS

1. はじめに

2011年3月11日に生起した東北地方太平洋沖地震とそれに伴って発生した津波、及びその後の余

震によって引き起こされた災害を東日本大震災という。余震域は幅200km,長さ500kmと広範であり、非常に活発な余震活動が発生した¹⁾。東北

本論文に対する討論は平成26年2月末日まで受け付ける。

三重大学大学院生物資源学研究科
Department of Environmental Science & Technology,
Graduate school of Bioresources, Mie University.

地方太平洋沖地震は1995年1月17日に発生した兵庫県南部地震と同じ震度7を記録し、マグニチュード9.0という日本における観測史上最大規模の災害となった。加えて、死者・行方不明者数は兵庫県南部地震(6,437人)の約3倍である18,579人 2 となった。特に被害の大きかった岩手県、宮城県、福島県で、震災1か月後までに収容された遺体より、死因の92.4%が溺死である 3 ことがわかった。これより、数々の研究者が指摘しているように、東日本大震災では、人的被害に限って言えば、地震動そのものが原因の被害より、津波に由来するものの方がより深刻であったといえる。

津波災害が発生した場合、津波浸水域を把握す ることは非常に重要である。一般的に、津波浸水 域は現地踏査、航空写真・衛星写真の解析によっ て推定される。原口·岩松 (2011)⁴⁾は、今回の災 害に関して現地踏査によって津波浸水域を推定し た代表例であり(ただし、未踏査区間を航空写真 判読で補完している。また、後述するように、原 口・岩松 (2011)⁴⁾は彼らだけの成果物ではない), 国土地理院が発表している「10万分1浸水範囲概 況図」5)「2万5千分1浸水範囲概況図」6)は、地 震後に航空写真や衛星データを利用して写真解析 で推定されたものである。津波浸水域を推定する 意義としては、(1)地震や津波のメカニズムを正 確に把握すること,(2)被害域としての津波浸水 域を早急に把握し、復旧・復興に役立てること、 の二つがあると思われる。(1),(2)とも迅速性 が必要なのは言うまでもないが、本研究では特に (2)の観点で解析を行う。

例えば、ここで、事業継続計画・業務継続計画 (Business Continuity Plan:以降はBCPと称す; 前者は主に民間で、後者は主に官で用いられる用 語であるが、基本的には同じである)に基づいた 復旧・復興について考えてみよう。BCPには様々 な定義があるが、経済産業省^{のが}引用している英 国規格協会の定義は「潜在的損失によるインパクトの認識を行い実行可能な継続戦略の策定と実 施、事故発生時の事業継続を確実にする継続計 画。事故発生時に備えて開発、編成、維持されて いる手順及び情報を文書化した事業継続の成果 物」である(ただし、文献7は、民間企業を対象 に、事業継続計画について書かれたものである)。 すなわち、事故や災害などが発生した際に、「如何 に事業を継続させるか」もしくは「如何に事業を 目標として設定した時間内に再開させるか」につ いて、様々な観点から対策を講じることを目的と し、BCPは、そのための計画自体を指している。 東日本大震災では中小企業を中心に、貴重な人 材・機材などを失ったため廃業となったり、復旧 が遅れたため資材を十分確保できず事業を縮小し たり、というケースが多く報告されてい る8。一方で、BCPを事前に策定していたこと で、いち早く復旧できた企業も多く報告されてい る9。主体が企業であるか自治体であるか、また 災害の規模などにより目標復旧時間は異なるが、 災害後1か月程度を目途として災害応急対応から 通常業務に移行することが内閣府から提案されて いる¹⁰⁾。そこで、本論文では、まず、時間的目標 として、「震災 (津波災害) 発災後、1,2か月 程度で津波浸水域を推定すること」とした。

次に、その手法について述べる。上述のよう に、通常、津波浸水域は現地踏査、航空写真・衛 星写真の解析によって推定される。ところが現地 踏査は、東日本大震災の様な広範な被災地域を抱 える場合、非常に大きな時間を必要とするため、 ここで考える「復旧・復興のために、1,2か月程 度で津波浸水域を推定する | という目的にはそぐ わない。それに対して、航空写真・衛星写真の解 析に依れば、迅速に津波浸水域を推定することが 可能であるが、高解像度の航空写真や衛星データ は気象条件などの影響により、正確に推定できな い場合がある。実際、国土地理院の「10万分1浸 水範囲概況図」5)や「2万5千分1浸水範囲概況 図」6)には、"浸水のあった地域でも把握できてい ない部分があります"、また、雲等により浸水範 囲が十分に判読できていないところもあります" という注釈が示されている。つまり、この手法も 万能ではない。加えて、航空写真や衛星写真は1 枚当たりの値段も高く、東日本大震災の様に、被 災域が広範な災害では、津波浸水域推定に多くの

費用が必要となる (ただし, 国土地理院が津波浸水域を発表した後, そのデータをそのまま使う場合はこの費用が発生しないのは言うまでもない)。

以上に鑑み、著者らは、気象条件などを考慮せず、低費用で、発災後1,2か月で津波浸水域を推定する、上述の現地踏査、航空写真・衛星写真の解析以外の推定手法、具体的に言うと、新聞記事を利用した手法について検討を行うこととした。

新聞記事には被害を受けた場所や被害程度など が詳細に「点データとして」記述されており、「面 的な」被害地域(津波浸水域)を推定するための 情報が十分収集可能である。確かに、災害発生か ら間もない時期における新聞記事の正確さについ ては議論の余地があり、さらに、場合によって は、地震や津波などに起因する現場の混乱によっ て、情報が十分入手できないという可能性が無い とも限らない(今回に関しては被災地の地方新聞 である河北新報等の例を見る限り、震災後間もな い時期においても十分な記事量があり、さほど心 配する必要はなかった)。しかし、本論文の趣旨 としては、地方新聞を含め、新聞社等のマスコミ 機関には災害に対する相当の脆弱性に対する対策 が講じられていると仮定する。加えて、新聞記事 は専門家の調査に同行の結果記述された例も見ら れ、その場合には記事の内容についても精査され ていると思われる。また、気象条件などを考慮す る必要はなく、費用は安い。このような利点が多 いにもかかわらず、今まで、広範囲の面的な津波 浸水域推定に用いられた例はないと思われる。

加えて、本論文で新聞記事を用いて面的な津波 浸水域を推定する「極めて重要な意義」について 以下で述べたい。ここまでの話は、「これから発生 する津波の浸水域をどう推定するか」という話で あった。技術がさらに発展した将来においては、 気象条件等々の心配なしに、"安価に"多くの衛星 写真を用いることが可能になっているかもしれな い。しかし、過去の津波痕跡から、過去の津波浸 水域を推定しようという場合、そのような技術発 展の恩恵は受けない。本論文では、そのような 「これから見つかる『過去の津波痕跡』」を用いて 「過去の、面的な津波浸水域」を推定することを視野に入れている。端的に言えば、新聞記事から得られる点データを、「過去の津波痕跡」に見立て、それを用いて津波浸水域を推定し、将来見つかるであろう「過去の津波痕跡」の利用に備えているのである。

東日本大震災以前に発生した東北地方の大地 震・大津波としては、昭和三陸地震(1933年)、明 治三陸地震 (1896年) 等が挙げられるが、それら の中でも869年7月に発生した貞観地震は仙台平 野の沿岸部から3 km 程度までの範囲に津波の痕 跡を残した110。東日本大震災においても、仙台平 野の沿岸部から貞観の地震をわずかに上回る程度 の4-5 km 程度、津波が侵入した。これを踏まえ て、「過去の津波に学ぶ」ことの重要性が再認識さ れ、震災後、過去の地震・津波資料を再考するよ うな活動が各地で行われている。特に、神社や石 碑などが過去の津波資料として利用可能であると 指摘されている。例えば、東日本大震災において も、岩手県宮古市姉吉地区に残る昭和三陸大津波 の後に建立された石碑(「此処より下に家を建てる な」と記述されている)よりも高い場所に津波は 遡上しなかった12)。つまり、この石碑は、津波の 痕跡として十分利用可能ということである。著者 らも岩手県沿岸部を調査した折に、同様の石碑を いくつか見ている。こうした歴史建造物のデータ は本研究において利用する新聞記事のデータと同 様に、位置情報のはっきりしている点データであ る。将来的に、このような痕跡が多く発見され、 利用されると予想される。

以上をまとめ、本論文の目的を再掲し、次節以 降の構成を簡単に述べておく。

- (1) 震災 (津波災害) 発災後, 1,2 か月程度で 津波浸水域を推定することを目的とする。
- (2) 現地踏査, 航空写真・衛星写真の解析以外の手法として, それらの手法の短所をカバーする 「新聞記事を利用する方法」を検討する。
- (3) その手法は、将来見出されるであろう、「過去の津波痕跡から過去の津波浸水域を推定する」 ことにも応用することを重要な目的としている。
- (4) 最後に、我々の推定した津波浸水域が正し

いか否か, 手法が妥当か否かを, 従来の手法で求められた津波浸水域と比較することで確認する。

2. 使用データ

本研究で用いたデータは、大きく分けて、(1) 著者らが津波浸水域推定に用いるデータと、(2) 推定した津波浸水域の妥当性を確認するための、他の手法による津波浸水域推定結果に分けられる。(2)は、それ自体、誤差を含む可能性があるものではあるが、本研究ではそれらを真値と考え、著者らの推定値のチェックを行うことにする。

(1)には、新聞記事、地形データがあり、(2)には、津波浸水域想定結果がある。これらのデータの概要をまとめたのが、表1である。また、各データの詳細などについては次節以降で説明する。

2.1 新聞記事

これは、前述の、「著者らが津波浸水域を推定するために用いた」データである。

新聞として、朝日新聞¹³⁾、読売新聞¹⁴⁾、河北新報¹⁵⁾、中日新聞¹⁶⁾を用いた。最初の3紙については、震災特別縮小版を利用した。これらの縮小版には2011年3月11日~2011年4月11日の約1か月間の新聞記事が収録されている。また、中日新聞については「中日新聞・東京新聞記事検索サービス」を利用し、2011年3月11日~2011年4月30日の約1か月間の新聞記事を利用した。

被災地の地元紙としては河北新報のみならず, 岩手日日新聞や福島民報があるが,記事に重複があり,データ量をやみくもに増やしても,処理能力に限界があるので,初期の段階で特別縮小版を入手した河北新報のみを利用している。なお,中日新聞には,地元紙の転載記事が掲載されていたため,間接的ではあるが,そこから地元紙記事データを入手したケースもあった。

表1 使用データ一覧

新聞記	 !事				
データの正式名称	当論文における呼称	出版社名			
朝日新聞縮小版 東日本大震災13)	朝日新聞	朝日新聞社			
読売新聞特別縮小版 東日本大震災 1か月の記録 ¹⁴⁾	読売新聞	読売新聞社			
河北新報特別縮小版 3・11 東日本大震災 1カ月の記録 ¹⁵⁾	河北新報	竹書房			
中日新聞・東京新聞記事検索サービス16)	中日新聞	中日新聞社			
地形デ	ータ				
データの正式名称	当論文における呼称	提供機関			
海岸線データ(JPGIS2.1[GML]準拠及び SHAPE 形式 データ)	海岸線データ				
標高・傾斜度 4 次メッシュ(JPGIS2. 1[GML]準拠及び SHAPE 形式データ)	4次メッシュ }	国土交通省国土政策局17)			
標高・傾斜度 5 次メッシュ(JPGIS2.1[GML]準拠及び SHAPE 形式データ)	5次メッシュ				
数値標高モデル10mメッシュ(JPGIS[GML]形式)	10m メッシュ	国土交通省国土地理院18)			
浸水域データ					
データの正式名称	当論文における呼称	備考			
津波到達(浸水域)判読ライン	津波到達判読ライン	東日本大震災初動対応 プロジェクト ²⁰⁾			
津波到達判読ラスタ	津波到達判読ラスタ	津波到達判読ラインより 著者らが作成			
東日本大震災津波詳細地図	津波詳細地図	原口・岩松 (2011)4)			

2.2 地形データ

これも,前述の,「著者らが津波浸水域を推定するために用いた | データである。

解析に利用する地形データとして、標高データ と海岸線データを利用している。標高データは Digital Elevation Model (DEM) と呼ばれており、 衛星データや実測値を基に標高値を内挿したモデ ル値である。このような標高データとして、国土 交通省国土政策局が国土数値情報17)として公開し ている標高·傾斜度 4 次メッシュ (JPGIS2.1) [GML] 準拠及び SHAPE 形式データ) [以降は4 次メッシュと呼ぶ], 同 5 次メッシュ (IPGIS2.1) 「GML」準拠及び SHAPE 形式データ)「以降は 5 次メッシュと呼ぶ〕ならびに、国土交通省国土地 理院が基盤地図情報18)として公開している数値標 高モデル10mメッシュ(IPGIS 「GML」形式) 「以 降は10mメッシュと呼ぶ]の3種類を利用した。 これらの空間解像度は、それぞれ、500m、 250 m, 10 m である。

10mメッシュに関してはバイナリデータであるため、株式会社エコリス¹⁹⁾が公開している「基盤地図情報 標高データ変換ツール Ver1.4」を利用して、地理情報システムでよく利用される GeoTiff 形式に変換した。

また、海岸線データ(JPGIS2.1 [GML] 準拠及 びSHAPE形式データ)としては、国土交通省国土 政策局が国土数値情報⁽⁷⁾として公開している海岸 線データを利用した。

2.3 浸水域データ

これは、前述の、「著者らの推定値のチェック」に使うデータである。津波浸水域の「真値」と考える。本研究では、津波浸水域データとして、東京大学生産技術研究所地球環境工学研究グループが行っている東日本大震災初動対応プロジェクト²⁰⁾より、国土地理院オルソ航空写真から作成した津波到達(浸水域) 判読ライン(以降、"津波到達判読ライン"と称す)、ならびに、原口・岩松(2011)⁴⁾の東日本大震災津波詳細地図(以降、"津波詳細地図"と称す)を用いた。津波詳細地図は、あとがきで原口・岩松が述べているように、東北

地方太平洋沖地震津波合同調査グループ²¹⁾の成果が含まれているが、一般に入手しやすい成果物は原口・岩松(2011) 4 として出版されている文献なので、本論文ではそれを参考文献として挙げる。推定値のチェックにおける 2 種類の真値の使い方に関しては、そのデータを用いるときに説明する。

3. 解析手法

3.1 解析手法の概要

津波浸水域を推定にするにあたって、標高、浸水深、津波浸水高の関係を用いている。「標高」はともかく、「浸水深」「津波浸水高」という用語については、若干注意が必要である。気象庁²²⁾は、「津波の高さ」「浸水深」「遡上高」「痕跡高」などを、平常潮位を基本として定義しているが、本論文では、津波詳細地図を参考に、「浸水深」「津波浸水高」を、東京湾平均海面を基本に定義した。図1はその関係を示したものである。

解析では、点データとしての津波浸水高を用いるのだが、それを新聞記事から抽出する方法について概説しておく。

- (1) 例えば、「宮城県石巻市にある渡波中学校で2階まで浸水²³⁾」といったような記事が新聞に掲載されていたとする。
- (2) この記事により、観測場所(便宜上、こう 称す)と浸水深の関係が、一つ得られる。
- (3) 観測場所のより詳細な位置情報を得た後、標高データを用いて標高を同定する。ただし、ここで、前述の通り、標高データは3種類あるので、「標高」は3種類得られる。

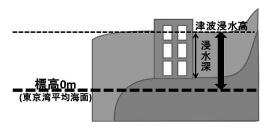


図1 津波浸水高の定義 一般的な津波の高さと異なり、津波浸水 高は標高0mを基準としている。

(4) 図1の関係を用いて、標高と浸水深を足し合わせて津波浸水高を算定する。標高が3種類あるので、3種類の津波浸水高が得られる。

以上の手順で、1つの新聞記事と標高データから得られた津波浸水高が点データとして得られる。しかしながら、著者らが算定しようとする津波浸水域は面データである。そのため、この津波浸水高について空間補間を行い、面データとしての津波浸水高(津波浸水高の空間分布)、つまり、津波浸水高のつンター図を作成する。最後に、津波浸水高の空間分布から、標高分布を減ずることで、浸水深の空間分布を得る。そして、浸水深が正の値をとる地域を、津波浸水域と考えるわけである。

一般的に、空間補間法としてスプライン法や Kriging 法が利用されているが、本研究ではスプライン法を用いて空間補間を行う。なお、これらの解析は、基本的に GIS ソフトウェア GRASS (Geographic Resources Analysis Support System)²⁴⁾を利用して行った。

3.2 新聞記事の抽出

まず、上記4社の新聞記事から浸水深と観測場 所を抽出する。多くの場合、新聞記事における記 述は民家の情報が多く、個人情報保護の観点から 正確な住所は記載されていない。例えば、ある民 家に関し、限定的な住所情報であっても、それが 掲載されていると「その民家」の位置は大まかに 推定できる。その、大まかに推定された地域の中 央を「その民家」の住所にすることも検討したが、 以下の理由で、そのような不確かな住所情報しか 持たない浸水深データは、基本的に使用しないこ ととした。つまり、本解析にとっては、「観測地点 の標高」が非常に重要な情報となっている。直接 的に標高が津波浸水高に影響を与えるためであ る。そのため、できるだけ正確な標高を得るため に、観測場所は住所が明確に記されている場合. もしくは、市役所や学校などの地物名が明確であ る場合のみ、データとして解析に利用することと する。なお、観測場所の住所情報は Google Maps を利用し、緯度経度情報に変換する。

3.3 浸水深の単位変換

新聞記事に記述されている浸水深は、多くの場合、「1階」などの「階」を単位として表記されている。しかしながら、津波浸水域の推定を行うためには、高さの単位を「メートル」に変換しなければならない。そこで、日本における建築物の1階あたりの平均高が約 $3.0\,\mathrm{m}$ であることを利用し、1階を $1.5\,\mathrm{m}$ 、1階天井を $3.0\,\mathrm{m}$ 、2階を $4.5\,\mathrm{m}$ というように高さの単位を「階」から「メートル」に変換する。

3.4 津波浸水高のスプライン補間

前述のように、本研究では、浸水深と標高を足し合わせた津波浸水高を解析に用いる。この津波浸水高は、潮位計などで計測される「津波の高さ」のように「平常(津波がない場合の)潮位」を基準とするのではなく、「東京湾平均海面(即ち、標高0m)」を基準としている。また、今まで記述した手順で新聞記事から得られた津波浸水高は点データである。そのため、我々が目的としているような、面データである津波浸水高の分布(つまり、浸水深の地図、津波浸水域の地図)を得るために、点データの空間補間を行う。

空間補間を行う場合、「浸水深」をデータとして 使用するケースと、本研究で作成した「津波浸水 高」をデータとして使用するケースの2通りが考 えられる。本研究では、以下の理由によって、後 者のケースを採用した。

- (1) 浸水深は、標高が局所的に小さい場合、そこだけ非常に大きな値を示すことがある。そうなると、その「局所的に大きな値」が補間の際に、その周囲に大きな影響を与える場合が考えられる。
- (2) 浸水深に標高を加えた津波浸水高は,静水 圧の原理が働くならば,近傍の点で同じような値 を示すはずである。つまり,水の粘性や地表面か らの摩擦がなく,水が静止しているなどといった 理想状態において,「局地的に静水圧平衡が成り立 つ」と仮定できる。
- (3) 上記の理由で、より空間的に安定している「津波浸水高」の方が、補間するデータとしては適

切である。

この津波浸水高に対し、3次元スプライン曲面 補間を南北方向に岩手県から茨城県、東西方向に 海岸線から内陸10km までの領域で実施する。

本研究では、2次元の空間的な位置(x, y)に津波浸水高という属性値(z=f(x, y))を持った状態で、そのzを空間的に補間し、z=f(x, y)なる曲面を、いくつかの点データから推定することを想定している。つまり、曲面補間である。しかし、話を簡単にするため、以下、いくつかの点を結んで滑らかな線を得る曲線補間を例に、補間についての解説を行う。

一般的な曲線補間法としては、ラグランジュ補 間やニュートン補間が挙げられるが、これらの補 間法はn+1 個の点 $(x_0, y_0), (x_1, y_1), \dots, (x_j, y_j),$ \dots (x_n, v_n) に対して1つのn 次式を求めることに よって区間内の補間を行う。ここで、 (x_i, y_i) は各 点のx 軸方向、y 軸方向の座標を示している。こ のように複数の点について1つのn次式を利用す るため、ラグランジュ補間やニュートン補間など では次数が高くなると、極端な補間値が出現しや すいという欠点がある250。一方で、スプライン曲 線補間は、それらとは異なり、n+1個の点を2 つの点の区間 $[x_i, x_{i+1}]$ $(j=0,1,\dots, n-1)$ に分割し、 それぞれの区間に別々の3次式 f_i(x)を定義して 緩やかな曲線にし、前述の補間法のような極端な 補間値が得られないようにする。ただし、下述の 方法で、隣同士の曲線がうまく接続できるように 設定されている。

3次スプライン曲線補間の基礎式は、次式(1) のとおりである。ここで、今、区間[x_j , x_{j+1}]を対象としている。

$$f_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i$$
 (1)

端的に言えば、 $f_j(x)$ が (x_j, y_j) 、 (x_{j+1}, y_{j+1}) を通るように、また、隣の $f_{j-1}(x)$ 、 $f_{j+1}(x)$ とうまく接続するように $f_j(x)$ を決める。具体的には、以下の4つの条件下で a_i 、 b_i 、 c_i 、 d_i を求める。

[条件1] $f_i(x)$ が点 (x_i, y_i) を通る。

[条件2] $f_i(x)$ が点 (x_{i+1}, y_{i+1}) を通る。

[条件3] x_i における左右の $f_i(x)$ の1次導関数の値が等しい。

[条件4] x_i における左右の $f_i(x)$ の2次導関数の値が等しい。

[条件5] 始点 x_0 と終点 x_n における2次導関数の値が0となる。

以上のようなこのスプライン曲面補間は、時として予測しない不規則な振動を示すことをFletcher and McAllister $(1990)^{26}$ などが指摘している。この問題を解決する方法として「張力」と呼ばれる形成パラメータを用いることがある。

赤塚ら(2011) 27 はスプライン曲面補間をゴムシート(z=f(x,y)で表される局面のことである)のサーフェスが各観測点の属性値(観測値のある点における z=f(x,y))に対応する点を通過し、サーフェス全体の曲率が最少となるようにゴムシートを曲げる様な補間であると述べている。その中で、張力はゴムシートの硬さを制御するパラメータであり、張力の値が大きいとゴムシートは硬いため観測点の値はその近隣にしか影響を及ぼさないと説明している。

この張力について、適切な値というものは特に 明示されていない。そのため、標高データに対応 して推定された3種類の津波浸水域(津波浸水高 が正の値を示す地域)について、それぞれ、津波 到達判読ライン(東大生産研)を真値と考えて、 推定津波浸水域と津波到達判読ラインを比較す る。その過程で、適切な張力の値を検討する。な お、ここで、津波到達判読ライン(東大生産研) は線データである。そこで、後述のように、著者 らが推定した津波浸水域と真値である津波到達判 読ライン(東大生産研)を比較する際、津波到達 判読ライン(東大生産研)をといする際、津波到達 判読ライン(東大生産研)をラスタ化したデータ (以後、「津波到達判読ラスタ」と称す)を用いる。 これは、面データ同士の方が、比較がしやすいた めである。

我々の推定した「津波浸水域」と「津波到達判 読ラスタ」を比較する際、張力を50~300の範囲で 50ずつ、300~1000の範囲で100ずつ変化させた。 最適張力を決定する手法については4.2節で述べる。 我々の推定データと真値を比較する場合、その一致度を算定する必要があるが、その一致度の指標として「 $Cohen \kappa$ 係数」 $^{(28)}$ を用いた。

3.5 一致度の指標 (Cohen κ 係数)

本研究では、津波到達判読ラスタ(真値と考える)と(我々が独自の手法で推定した)津波浸水域の一致度の指標として、Cohen κ 係数を用いる。Cohen κ 係数は一致性を判断する際によく用いられており、カイ二乗の考え方と同様に、実測値と期待値を比較することによって算出される。

例として、表 2 で示すような 2 つのデータ A, B を考える。データ A, B ともに、200個のデータを持ち、その200個のデータは 1 もしくは 0 の値を持つ。ここで、A (1) \sim A (200) と B (1) \sim B (200) がどの程度一致しているのかを評価するのが、Cohen κ 係数である。

まず、データAとデータBのみかけの一致率 (P_o) は次式で表される。

$$P_0 = \frac{25 + 160}{200} = 0.93. \tag{2}$$

これは、200個のデータの組のうち、A(i)=B(i) ($i=1,2,\cdots$, 200) となるものの割合を示している。これだけを見ると、データ A、B はよく一致しているように見えるが、この確率の中には偶然の一致が含まれる。そこで、特に A と B が何らかの根拠を持って一致しているのではなく、ただ単に、偶然一致している確率を以下のように求めてみる。データ A は B とは独立に、 $\frac{35}{200}$ の確率で 0 となる。つまり、平均的に、

表 2 Cohen κ 係数の例

		データ B		
		0	1	計
デ	0	25	10	35
 	1	5	160	165
Á	計	30	170	200

$$P_{e1} = \frac{35}{200} \cdot \frac{30}{200} \approx 0.03. \tag{3}$$

の確率で、「偶然に」両者が0で一致すると考える。同じように、次式の確率 (P_{e^2}) で、両者が「偶然」1という値を示して一致すると考える。そこで、両者が偶然一致する確率を、次式のように算定する。

$$P_e = P_{e1} + P_{e2} \approx 0.73.$$
 (4)

このケースだと、式 (2) の P_0 が仮に0.73であれば、それは見かけ上の一致割合が、すべて「偶然の産物」と考えることができる。そこで、このような場合を「一致度 0」とするような指標を作るために、指標の計算式の分子を P_0 - P_e とする。また、「完全に一致している場合(今のケースならば200個全部が一致している場合)」を「一致度 1」とするならば、指標の計算式の分母を 1 - P_e とすればよい。これにより、

$$\kappa = \frac{P_0 - P_e}{1 - P_e} \tag{5}$$

は、 $0\sim1$ の値を示す一致度の指標となり、これを、Cohen κ 係数と称す。**表 2** のケースだと、 $\kappa=0.73$ と算定される。ここまでの説明は、社会情報サービス統計調査研究室の資料²⁹⁾を参考にしたが、さらに詳しい説明は Kundel and Polansky $(2003)^{28)}$ などを参照されたい。

ここで、Cohen κ 係数がどの程度であれば、満足な一致とみなせるのかなどという、絶対的な値については、一例として、下記のようなものがあり(下井、 2003^{30})、本論文でもこの値を使用する。

 $0.80\sim1.00$: ほぼ完全な一致 (excellent) $0.60\sim0.80$: 実質的に一致 (good to fair) $0.40\sim0.60$: 中程度の一致 (moderate) $0.40\sim0.40$: 低い一致 (poor agreement)

3.6 津波浸水域の推定

ここまでで述べたように、新聞から得られた点

データとしての津波浸水高を元データとして,曲面スプライン空間補間により,面データとしての津波浸水高を得る。そして,津波浸水高の空間分布から,標高分布を減ずることで,浸水深の空間分布を得る。そして,浸水深が正の値をとる地域を,津波浸水域と考える。

4. 解析結果

4.1 観測点の概要

新聞記事から収集した津波浸水深の観測点は 170点であった。まず、その170の観測点を 2 種類 に分類する。170の観測点のうち、3.2節で述べた ようにきわめて正確な位置情報を持つ107観測点 を"第1種の観測点"と称し、当面これらだけを 用いた解析を行う。観測点の位置及び、観測点の 津波浸水高を示すヒストグラムを図2. 図3にそ れぞれ示した。図2において第1種の観測点107 点を淡灰色で、第2種の観測点63点を濃灰色で示 した。このとき、後者の63点は、第1種の観測点 と比較して、おおざっぱな位置情報、たとえば、 地区名などが判明しているだけである(3.2節参 照)。そのため、判明している地区の中心地を観 測点の位置と考えたり、その地区に市役所・町役 場などがある場合はその位置を代表地としたりし た。

図3においては、黒が4次メッシュ、灰色が5次メッシュ、淡灰色が10mメッシュに対応している。

図3からわかるように、標高20m以下の津波浸水高を示す観測点が非常に多い。実際の(面的な)津波浸水高分布はこれら標高20m以下の低地に位置する多くの観測点における津波浸水高から推定するわけだが、この時点で、以下のことがわかる。

(1) 津波浸水高は地域によって(観測点によって)異なる、という結果が得られる(つまり、津波浸水高のコンター図が得られる)はずだが、今107の観測点のデータを用い、「津波被害を受けた観測点の津波浸水高が20m以下の場合が多い」となれば、それは、「津波浸水高=標高+津波浸水深」という関係から、津波被害を受けた観測点の

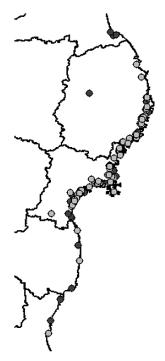


図2 第1種の観測点(淡灰色)と第2種の観測点(濃灰色)の位置 住所や地物名から正確な位置情報を持つ 観測点(107点)を第1種の観測点,地区 名などのおおざっぱな住所から,その地 区の中心や市役所・町役場の位置を代表 地とした観測点(63点)を第2種の観測 点とした。主な解析には第1種の観測点 を用いたが,5.4節においてのみ第2種 の観測点を用いている。

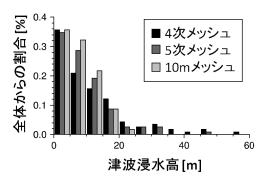


図3 津波浸水高のヒストグラム 第1種の観測点における津波浸水高 (= 浸水深+標高)を3つの標高データから 算出し、ヒストグラムに示した。以前か ら言われていた標高20m以下の低地の危 険性が示されている。

多くは、標高が20m以下であったことになる。

(2) つまり、「明治三陸地震(1896年)や昭和三陸地震(1933年)などが発生した際に、20mを超える津波が観測されたことから、標高20m以下の低地が津波の影響を受けやすい」とよく言われている 31 が、そのような場所に集中していることがわかった。それぞれの 20 m以下の観測点の割合は 4 なメッシュが 2 2%、 5 次メッシュが 2 82.6%、 2 10mメッシュが89.6%であった。これは、用いる標高データの解像度が違えば、観測点の標高値が変わるからである。

4.2 張力を使用したスプライン補間の結果

3 種類の標高データを対象に, 張力を50~300 の間で50ずつ, 300~1000の間で100ずつ変化させ て, それぞれ13個の浸水域を作成した。

これらについて,以下のような方法で最適な張 力を求めた。

- (1) 新聞記事と標高データから得られた津波浸水高(入力値)とスプライン補間によって算出された津波浸水高(計算値)の誤差を求め、107の観測点についてこの誤差の絶対値を平均した。これを以降は平均誤差と呼ぶ。
- (2) 平均誤差を張力の値ごとに算出し、最も平均誤差が小さくなる張力のスプライン補間結果を最適値とした。つまり、最適化のための目的関数は「平均誤差」であり、ここではそれを最小化する。

その結果を示したのが図4である。図4から明らかであるように、平均誤差はいずれのデータに対しても、指数関数的に減少していくことがわかった。また、表3から明らかであるように、張力が大きくなるにつれて、平均誤差の値が収束していることがわかった。以上の結果より、本研究では、いずれのデータにおいても張力1000の場合が最も平均誤差が小さく、さらに張力値を大きくしても平均誤差の変動が小さいと考えられることから、張力1000を以降の津波浸水域の推定に用いた。また、決定した張力値における平均誤差を表3にシェードで示した。

また、張力1000の場合における入力値(新聞か

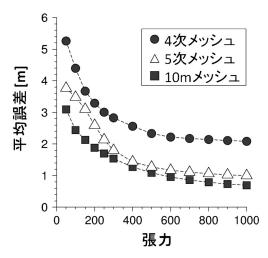


図4 張力と平均誤差の関係 平均誤差は新聞から読み取った津波浸水 高と張力スプライン補間によって算出し た津波浸水高の差を求め、その絶対値を 全地点で平均したものである。いずれの データにおいても、張力が上昇するにつ れて平均誤差が収束している様子がわか る。本研究では張力1000において平均誤 差の変動がなくなったと考え、いずれの データについても張力を1000とした。

表3 入力値と推定値の平均誤差

平均誤差[m]					
張力	4次メッシュ	5次メッシュ	10 m メッシュ		
50	5. 256	3. 765	3. 094		
100	4. 393	3. 477	2. 441		
150	3.670	3. 101	2. 125		
200	3. 288	2. 592	1.880		
250	3.004	2. 132	1.698		
300	2.823	1. 797	1.539		
400	2. 558	1. 434	1. 270		
500	2. 332	1. 268	1.088		
600	2. 216	1. 168	0. 955		
700	2. 174	1. 103	0.858		
800	2. 139	1.058	0.786		
900	2. 110	1.023	0.733		
1000	2. 083	0. 997	0. 692		

ら得られた生データ)と推定値(同一地点で2次元スプライン曲面が表示している値)の相関係数を求めたところ、4次メッシュ、5次メッシュ、10mメッシュで、それぞれ0.928、0.997、0.943と高い相関があることがわかった。このことから、ある意味当たり前のことではあるが、上述の方法で計算されたスプライン曲面が元データをある程度以上、反映させていることが確認できる。

4.3 津波浸水域の推定結果

4次メッシュ,5次メッシュ,10mメッシュの3種類の標高データから算出した津波浸水域を図5にそれぞれ示した。図中の赤色で示した領域が本研究で推定した津波浸水域である。また,この図5は,左から4次メッシュ,5次メッシュ,10mメッシュに相当している。

これらの推定結果について、岩手県及び宮城県では誤差が最小・最大・平均になる3点の、福島県では全2点の地物名、緯度経度、入力値、推定値及び誤差を表4にまとめた。ここで、入力値、推定値及び誤差は10mメッシュにおける結果を

示している。また、岩手県及び宮城県において入力値がゼロで推定値もゼロの地点はそれぞれ7点及び12点あったが、これらの点を「推定誤差がゼロ」とみなさず、表4作成中には除外し、それ以外の値を用いて表作成した。

平均誤差は岩手県で0.59 m, 宮城県で0.45 m となっており, 新聞記事から概算した浸水深を利用したことを考えれば, 非常に精度よく推定できたと考えられる。ただし, この比較は、「元々新聞データのあった点で」「新聞データから得られた入力値」と「スプライン補間したことによって算出された出力値」を比較したものであることに注意されたい。つまり、「元々データのなかった点でのスプライン補間による推定精度」を測ったものではない。

5. 津波浸水域の比較

本研究で推定した津波浸水域の正確性・妥当性を確認するために、本研究で推定した津波浸水域(図5)と津波到達判読ラスタ、ならびに、津波詳細地図を比較した。ここで若干の注意が必要なの

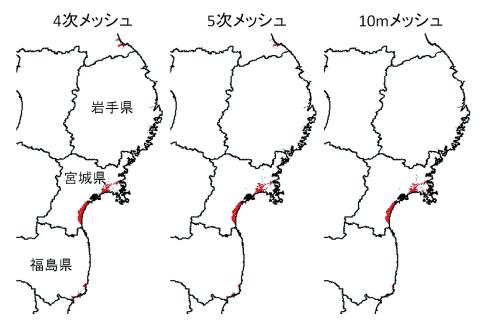


図5 推定津波浸水域 左から、それぞれ 4 次メッシュ、5 次メッシュ、10 m メッシュの著者らが推定した津波浸水域(赤 色)である。

で、詳細にそれを述べる。通常、物理モデル・数理モデルのモデル構造、またはパラメータを決める作業をキャリブレーションといい、その際に再現しようとする、目的の現象を表すデータ(インプットデータとアウトプットデータの両方)を用いる。つまり、あるインプットに対し、できるだけモデルが実現象に近いアウトプットを排出するように、モデル構造やパラメータを調整するのがキャリブレーションである。

その次に、全く違うインプットをモデルに用い、そこで出てきたアウトプットが、別の条件下の実現象を表しているかどうかを確認する。これがバリデーションである。

我々がここまでやってきたことは、張力を変え、どの張力が実現象に近いアウトプットを出すかを見て、最適な張力を求めることであった。上述のキャリブレーションに相当する。理想的には、さらに上述の意味でのバリデーションを行うべきではあるが、今、浸水データは一つ(詳細なデータが発表されている津波は2011年のものだけなので)であるから、別データによるバリデーションは不可能である。そこで、読者には以下のように理解していただきたい。

- 1)上述の意味での、完全なバリデーションは不可能である。いまのところ、現象が一つしかないからである。
- 2) しかし、キャリブレーションの際に用いる目 的関数 (パラメータを求める際に何を最小値 または最大値にするか)を変えても同様の結

果, つまり, そういう意味でのロバストな結果が出るかどうかは確認できる。

著者らは、目的関数 Cohen κ の最大化を最適化の条件とするようなキャリブレーションも別に行っているが、結果的に、前節で述べたように、キャリブレーションは平均誤差の最小化により行い、その結果に Cohen κ を適用することとした。以下、その結果について述べる。

津波到達判読ラスタについては Cohen κ 係数を一致性の判断に用いた。また、津波詳細地図は一部地域で見られた(著者らの求めた)推定津波浸水域と実際の津波浸水域に大きな差がある場合に、さらに深い考察のために利用した。また、Cohen κ 係数を用いて、標高データの解像度が違うと結果がどう違うについても考察を行った。前述のように、推定津波浸水域は標高データに大きく影響を受ける。そのため、これは標高データの解像度による推定津波浸水域(つまり推定精度)の違いを明らかにすることを目的としている。

5.1 解像度の違いによる比較

まず、津波到達判読ラスタを真値と考え、(著者らが推定した)推定津波浸水域と津波到達判読ラスタの一致度を Cohen κ 係数を用いて評価した。その結果、表 5 で示したように、岩手県、宮城県、福島県を一括して考えた場合、津波到達判読ラスタと推定津波浸水域の一致度 (Cohen κ 係数)は、4次メッシュ、5次メッシュ、10mメッシュでそれぞれ0.54、0.57、0.65となった。3.5

		地物名(市町村名)	緯度	経度	入力値	推定值	誤差
毕	最小值	鵜住居地区防災センター (釜石市)	39. 328	141. 89	10.30	10. 36	0.06
岩手県	最大値	市営釜石ビル (釜石市)	39. 274	141.89	13. 90	0.00	-13.90
県	平均值	さんりくの園 (三陸町)	39. 122	141.81	15. 40	16. 31	0. 59
宜	最小値	東六郷小学校(仙台市)	38. 199	140. 95	3. 60	3.60	0.00
宮城県	最大値	野蒜小学校 (東松島市)	38. 376	141. 15	7. 50	0.00	− 7. 50
	平均值	宮城農業高校(名取市)	38. 157	140.94	6.80	6.76	0.45
福島県		磯部中学校 (相馬市)	37. 767	140. 99			
県		富岡第一中学校(富岡町)	37. 338	141.02			

表 4 誤差が最小値・最大値・平均値を示した地点とその場所における誤差

ここで、入力値、推定値及び誤差は10mメッシュにおける値を示している。福島県ではデータ数が少ないため、最小値、最大値、平均値の評価をしていない。2点のデータの緯度経度だけ表示した。

節で示したように、4次メッシュならびに5次メッシュは中程度の一致度を、10mメッシュは十分な一致度を示していることがわかった。

次に、県ごとに、上記と同様に一致度を求めた。まず、図6の説明をしておこう。ここまで、(著者らが求めた)推定津波浸水域と、津波到達判読ラスタを、Cohen κ 係数なる一致度の指標を用いて評価してきた。「津波到達判読ラスタ」を用いたのは、双方とも同じような、「分布型の面データ」でないと Cohen κ 係数を算定できないからである。ところが、図6は、推定津波浸水域と、真値と考える津波浸水域の境界を比較しようとしている。そこで、見やすいように、赤で示した「推定津波浸水域」と、青線で示した「津波到達判読

表5 第1種の観測点における推定津波浸水域 と津波到達判読ラスタの地域別一致度

Cohen κ 係数				
	4次メッシュ	5 次メッシュ	10 m メッシュ	
全体	0. 535	0. 570	0. 646	
岩手県	0.465	0.460	0.643	
宮城県	0.662	0.676	0.738	
福島県	0. 191	0. 102	0.056	

ラスタの元となった」「東大生産研による津波到達 判読ライン」を比較している。つまり、赤く塗ら れた地域の境界あたりに青い線があれば、推定が うまくいったと考えることが出来る。

図 6 より、以下のことがわかる。すなわち、図の解像度の問題で、若干目視では確認しにくいが、特に岩手県及び宮城県において、推定した3種類の標高データに対応する3種類の津波浸水域(赤色)は真値である津波到達判読ラスタ(青い実線、上述のように、図中では津波到達判読ラインを記載している)とよく一致している。このときの岩手県における Cohen κ 係数は 4 次メッシュ、5 次メッシュ、10 m メッシュで、それぞれ0. 47(中程度の一致)、0. 46(中程度の一致)、0. 64(実質的な一致)であった。

続いて、宮城県・福島県においても、同様に、Cohen κ 係数を算出した。その結果、宮城県における Cohen κ 係数は 4 次メッシュ、5 次メッシュ、10 m メッシュで、それぞれ0.66, 0.68, 0.74(すべて、実質的な一致)であった。ただし、福島県だけは成績が悪く、Cohen κ 係数は、それぞれ0.19, 0.10, 0.06(すべて、低い一致)であった(表5)。

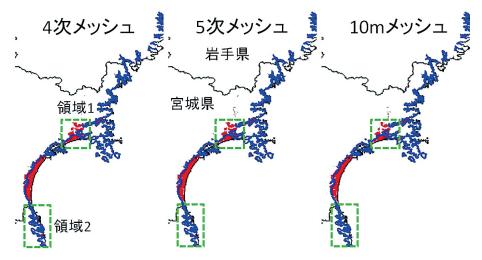


図6 推定津波浸水域(赤色)と津波到達判読ライン(青線) 左から、4次メッシュ、5次メッシュ、10mメッシュにおける、宮城県を中心とした地域の推定津 波浸水域(赤色)と津波到達判読ライン(青線)を示している。また、領域1(岩手県石巻市北西 部)、領域2(福島県北部沿岸)を緑色の破線で示した。

以上の結果より、岩手県では $10 \,\mathrm{m}$ メッシュの、宮城県では全ての推定津波浸水域は $10 \,\mathrm{m}$ そ係数が $10 \,\mathrm{m}$ 6以上であり、少なくとも、 $10 \,\mathrm{m}$ 程度の解像度の標高データを使用した場合には、十分な津波浸水域が推定できると結論付けられる。

その一方で、福島県においては Cohen κ 係数がいずれの場合も低く、ほとんど一致していない。5.4節で、これについての考察を行う。結論的には、福島県以南の観測点が少なかったため、適切な津波浸水域が推定できなかったと考えられる。つまり、データ不足が原因と考えられる。その対応については、5.4節で説明する。

次に、岩手県石巻市北西部の、(真値との)不一致について触れておこう。図6の緑の破線で囲った「領域1」を見られたい。図6で示したいずれの図においても、領域1において推定津波浸水域(赤色)が津波到達判読ライン(青線)を超えて広がっている(我々の結果がoverestimateである)ことがわかる。そのため、次節以降、推定津波浸水域と実際の津波浸水域の大きな違いがみられる2地点を取り上げ、それらについて考察を行う。

5.2 推定津波浸水域と津波詳細地図の比較

図6は観測点が多く存在する宮城県を中心とした地域を示している。図中の赤色で示した領域が推定津波浸水域であり、青い太線が津波到達判読ラインである。また、細い黒線は海岸線ならびに県境線を、また、宮城県から福島県の一部の沿岸

地域に、北から順に、領域1、領域2を設定した。図6は、それぞれ、左から4次メッシュ、5次メッシュ、10mメッシュに相当している。

図中の青い津波到達判読ラインを真値とすると、前述の領域1(岩手県石巻市北西部)及び領域2(宮城県南部から福島県の領域)において、著者らの推定した津波浸水域と津波到達判読ラインが大きく異なっていることがわかった。そこで、これら2領域について、以下のように考察を行った。ここで、図7、図9は、それぞれ、領域1、領域2を拡大したものである。

5.3 領域1 (岩手県石巻市北西部) について

この領域について、全ての推定津波浸水域が実際の津波浸水域よりもさらに内陸に広がっていることがわかった。

我々の推定津波浸水域において浸水が示された 地域は石巻市北西部に位置する河南地区,前谷地 地区及び広渕地区である。これらの地区について は、津波詳細地図においても浸水は表示されてい ない。しかしながら,石巻市北部には北上川に 沿って津波の被害があった。また,隣接する東松 島市から北進した津波もあった。これらの地区は そうした津波の被害を受けた地域に隣接する低平 地であることから、過大評価された(実際は浸水 がないのにあったように推定された)と考えられ る。この領域のより詳細な推定津波浸水域と津波 到達判読ラインを図7に示した。ここで、白丸が

図7 領域1における推定津波浸水域(赤色)と津波到達判読ライン(青線) 左から、4次メッシュ、5次メッシュ、10mメッシュにおける、領域1(図6参照)の推定津波浸水域と(赤色)と津波到達判読ライン(青色)を示している。中心部にある緑丸は石巻赤十字病院の位置を、白丸はその他の観測点の位置を示している。津波詳細地図等では浸水域外であるが、推定津波浸水高はいずれの標高データにおいても5.0m程度過大評価されている。

観測点の位置を示している。また、この領域において入力値と比べて推定値が最も大きかった石巻 赤十字病院を緑丸で示した。

この領域の推定値が過大評価された原因について、石巻市及び東松島市に位置する30の観測点に関し、入力値(新聞から得たデータ)と推定値(スプライン曲面が推定した値)の差(つまり誤差)を調べた。石巻市に位置する石巻赤十字病院においては、入力値がゼロ(浸水実績なし)であったにもかかわらず、推定値が5m程度の津波浸水高を示した。この場所以外の29か所については、平均誤差が0.4mにも満たない数値であった。

石巻赤十字病院は津波による浸水がなく,災害時の拠点病院として,地域に大きな貢献をした(津波による浸水がなかった傍証となる)。津波詳細地図等を参照すると,石巻赤十字病院の敷地内は確かに浸水がないが,その周囲は浸水していたことがわかった。これについては,図7においても,津波到達判読ライン(青線)が石巻赤十字病院(緑丸)を回り込むようにひかれていることでも推測できる。

この病院が浸水しなかったのに浸水したかのような推定値が出てしまった原因としては、今回使用したデータが微細な標高の変動を再現していないことが挙げられる。今回使用した標高データ

は、解像度の違いこそあれ、国土地理院が刊行している2万5千分の1地形図に記述されている等高線データから得られた標高値から計算して求めたデータである。そのため、人工物による盛土等の微細な標高変動は再現できない。その例として、石巻赤十字病院付近を拡大した標高データを図8として示した。これからも明らかであるように、微細な標高変動は再現されていない。そのため、微妙な地形の部分で誤差が出てしまったと考えられる。

5.4 領域2 (福島県北部沿岸) について

領域 2 について、図 9 を見ると、本研究による津波浸水域は、実際の津波浸水域と比較し、きわめて過小評価をしていることがわかる。つまり、津波到達判読ラインや津波詳細地図で津波による浸水があったとされている地域にもかかわらず、図 9 で赤く表示されていないところがきわめて多い。また、前述 (5.1節、表 5) のように、この領域におけるの 6 Cohen 6 係数の一致度は極めて低い。

著者らはこの原因について、この領域における 観測点数が少ないことが理由であると考えた。そ こで、いままで第1種の観測点のみを使って解析 していたが、ここで、第2種の観測点も含めて再

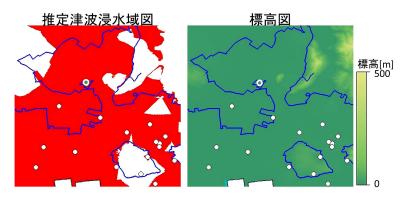


図8 石巻赤十字病院付近を拡大した推定津波浸水及び標高データ (10m メッシュ) 領域1について、石巻赤十字病院 (緑丸)を中心に拡大した推定浸水域図 (左図)及び同縮尺の標高 図 (右図)を示している。ともに、10m メッシュのデータを表示している。左図より、石巻赤十字病 院 (中心より少し上の緑丸) が津波到達判読ライン (青線)の外にあるため (緑丸より少し広い、 極めて小さな範囲で浸水がなかったことが表示されている)、浸水区域外であることがわかる。ま た、右図より、この領域において標高がほぼ一様であることがわかる。このときのカラーテーブル は SRTM と同等とした。

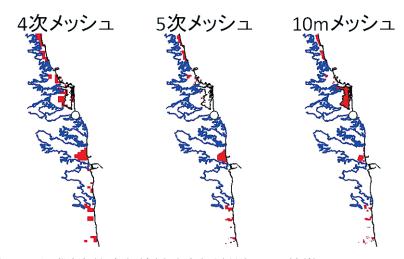


図9 領域 2 における推定津波浸水域(赤色)と津波到達判読ライン(青線) 左から、4 次メッシュ、5 次メッシュ、10 m メッシュにおける、領域 3 (図 6 参照)の推定津波浸水 域と(赤色)と津波到達判読ライン(青色)を示している。この領域における観測点(白丸)は 1 点のみであるため、いずれの標高データを用いた推定津波浸水域においても、一致度は Cohen κ 係数が0.1程度と低い。

解析を行うこととした。つまり、第1種の観測点107(図2,灰色)に加え、第2種の観測点63(図2,黒)を追加し、合計170の観測点を用いた解析を行うわけである。第2種の観測点については、前述のように、その位置を、それが位置すると推測される地域の中心部と仮定したり、もしくは地区内に市役所や町役場がある場合は、市役所や町役場の位置にあると仮定したりした。

これらの観測値を用いて、4.2節、4.3節と同様に推定津波浸水域を計算した。このときの張力はいずれの標高データにおいても、第1種の観測点のみで解析を行った場合と同様に、張力1000のとき入力値と推定値の平均誤差が最も小さくなり、張力をそれ以上に増加させても平均誤差の値がそれほど変化しなかったことから、張力1000とした場合の推定津波浸水域を以降の解析に用いた。また、張力を1000とした場合における推定津波浸水域と津波到達判読ラスタの Cohen κ 係数は、岩手、宮城、福島の 3 県を総じて見ても、4 次メッシュ、5 次メッシュ、10 m メッシュでそれぞれ 0.49, 0.55, 0.62と、いずれも4.3節の結果よりも一致度が微減した (表6)。

また、岩手県、宮城県、福島県の3県を、別々

表6 第1種及び第2種の観測点における推定 津波浸水域と津波到達判読ラスタの地域 別一致度

 Cohen κ係数					
	4次メッシュ	5次メッシュ	10m メッシュ		
全体	0. 487	0. 546	0. 616		
岩手県	0.468	0.427	0.670		
宮城県	0.495	0. 541	0.585		
福島県	0.650	0.616	0.654		

に扱って得られた Cohen κ 係数も表 6 に示した。表 6 より,宮城県においては Cohen κ 係数の値が低下している。これは,不正確な位置情報を持つ第2種の観測点が,悪影響を及ぼしていると言える。一方,岩手県ではあまり Cohen κ 係数の値は変動していないが,なぜ岩手県が宮城県と異なり,第2種の観測点による影響を受けなかったかは不明である。また,福島県では Cohen κ 係数の値が上昇しており,そもそも第1種の観測点数が少なかった福島県においては,第2種の観測点を併用することで,一致度が,低い一致から実質的な一致へ劇的に向上したと考えられる。このときの領域 2 における(著者らの)推定津波浸水域と

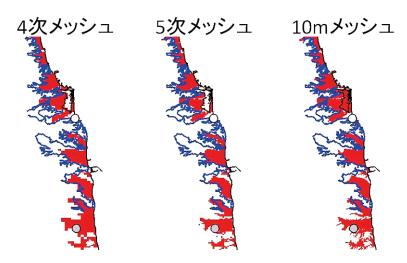


図10 観測点を増加させた場合における推定津波浸水域(赤色)と津波到達判読ライン(青線) 左から、4次メッシュ、5次メッシュ、10mメッシュにおける、領域2(図6参照)の推定津波浸水域と(赤色)と津波到達判読ライン(青色)を示している。また、白丸は第1種の観測点の位置を、灰色の丸は第2種の観測点の位置を示している。いずれの標高データを用いた推定津波浸水域においても、津波到達判読ラスタとの一致度はCohen κ係数が0.6程度(実質的な一致)であり、図9と見比べると劇的に向上している。

津波到達判読ラインを比較したのが、図10である。視覚的にも、図9と図10の比較により、結果が劇的に向上している様子が明らかである。この結果より、以下のことがわかる。

- (1) 福島県における一致度が低かった原因は、解析に用いた観測点数が少なかったためである。
- (2) 宮城県の結果と福島県の結果を比較すると、第1種の観測点が充分にある場合は、あえて、位置情報の精度が低い第2種の観測点を併用する必要はない。併用することで、結果の(真値との)一致度の向上はさほどみられない。しかし、明らかに第1種の観測点数が少ない場合は、次善の策として、第2種の観測点を併用することに、大きな意味がある。

5.5 解析の問題点

本論文の最後に、この研究の手法の問題点について触れておく。すぐに解決できるものではないが、将来的に解決すべき課題である。

(1) 新聞記事の階数を基本データとしたため、 例えば一階のどの程度の高さまで浸水したかとい う情報は不明である。解析では、「一階まで浸水」 という記事に対し、浸水深を1.5mとしたが、これには誤差があるのは当然で、その誤差の推定が必要である。

大ざっぱな考え方をするなら、誤差、特に誤差の平均値は Gauss 分布に従うと考えられるので、一階ならば、実際の浸水深は $N(1.5,\sigma^2)$ に従うと考えられる。この手法を用いて誤差を推定する必要があれば、分散 σ^2 を見積もる必要がある。

- (2) 民家や公共の建物、木造家屋とビルなどで、一律に「一階○m」という基準を用いてもいいものか。これについては、今回は一律な基準を用いたが、今後は、新聞記事の内容で建物の種類を分類すればより正確な推定ができると考える。
- (3) 大災害時の報道では内容の正確さが確認できない状況でも報道せざるを得ない場合がある。特に浸水深の情報などでは地域の平均的な浸水深を表さない場合もあることに留意すべきである。
- (3) 前述の通り、著者らは何度か解析をやり直した。平均誤差を用いて最適化した場合、Cohen κ を用いて最適化した場合など、キャリブレーション法が違っても、大略的な結果は変わらなかった。しかし、例えば「非常に精度が悪い場所

の解析」をするためにそういう場所をピックアップしようした場合、その場所が解析手法によって異なった。つまり、極端な値は非常に計算方法に敏感であるということである。一方、福島など、データの少ない地域について、「第2種のデータも含んだ方が良い結果が出る」という結果等、多くの結果はロバストで普遍的と考えている。

6. まとめ

2011年3月11日に発生した東日本大震災は日本における観測史上最大規模の災害となった。地震発生後1か月程度後に国土地理院が津波浸水域を公開し、次いで多くの観測結果、解析結果が公開された。しかし、地震直後の混乱時から、常に情報を報道してきた新聞記事を用いた解析はほとんどなかった。新聞記事の情報は正確で、また情報量が多く、安価という利点もある。考えようによっては、情報源として理想的である。そこで、東日本大震災に関する新聞記事から抽出した浸水深と標高データについて、GIS的な手法を用いることで推定津波浸水域を算定した。

まず、新聞記事から浸水深と位置情報を抽出した。このとき、正確な位置情報が得られた107点(第1種の観測点)のみをデータとして利用した。また、浸水深は「1階」などのデータで示されていたため、一般的な建築物の1階あたりの高さが3.0mであることを利用し、浸水深の単位をメートルに変換した。

張力スペクトル補間を用いて107の観測点の地図と標高データから得られた津波浸水高 (入力値)と補間結果 (推定値) について、誤差の絶対値を平均したところ、張力が大きくなるにつれてこの平均誤差が指数関数的に減少し、張力1000において最小値となることがわかった。また、張力1000とした場合の入力値と推定値の相関係数がいずれのデータにおいても0.9を超える良い相関を示した。以上の結果より、張力1000とした場合における空間補間の結果を推定津波浸水域として、以後の解析を行った。

東京大学生産技術研究所地球環境工学研究グループが公開している津波到達判読ライン²⁰⁾を著

者らが面データとした(ラスタ化した)津波到達判読ラスタを真値と考え,一致性の判断によく用いられている Cohen κ 係数を用いて,真値に対する,著者らの推定津波浸水域の一致性の評価を行った。その結果,4次メッシュ,5次メッシュ,10mメッシュの標高データを用いた場合の推定津波浸水域は,岩手県,宮城県,福島県を総じてみた場合,Cohen κ 係数が 0.54, 0.57, 0.65となった。これより,10mメッシュの標高データを用いた場合は,Cohen κ 係数の値が0.6よりも大きかったことから,実質的に津波到達判読ラスタと一致していると考えることができた。

しかし、これは、3県を総じてみた場合であっ て, 各県ごとに見た場合, 一致度が低いケースが 散見された。その中で、宮城県石巻市北西部にお いて推定津波浸水域が実際の津波浸水域よりも広 がっている事実が目立った。この原因として、標 高データが微細な標高変動を再現できていないこ とが原因であるとがわかった。誤差が最も大き かった石巻赤十字病院周辺に着目すると、今回使 用した標高データはいずれも国土地理院の2万5 千分1の地形図に記載されている等高線から計算 して得られたデータであるため、盛土や水田など による窪み等の微細な標高変動は再現できないこ とが原因の一つとして考えられる。そのため、こ れらの微細な標高変動を考慮した解像度の高い航 空測量等のデータを利用することで、より現実に 近い推定津波浸水域を算出することは可能である と考える。しかしながら、そのような航空測量は 非常に高価であり、また、過大評価された範囲が 全体からみるとごく一部であることから、そうし た方法は現実的とはいいがたい。

最後に、第1種の観測点だけを用いた本解析では、福島県において、Cohen κ 係数がきわめて低い値を示した。これは福島県における第1種の観測点数の少なさが原因である。そこで、第2種の観測点を併用することで、福島における真値との一致度は劇的に向上した。また、福島においては、観測点を増加させた場合に推定津波浸水域が津波到達判読ラインと近づいていることがわか

る。その一方で、宮城県では一致度が減少していることがわかった。つまり、第1種の観測点がきわめて少ない場合のみ、第2種の観測点の併用が効果的ということになる。

なお、本論文では、「被害域としての津波浸水域を早急に把握し、復旧・復興に役立てる」という観点から、「時間的目標として、震災(津波災害)発災後、1、2か月程度で津波浸水域を推定すること」を目標とした手法開発を行った(1章)。ここで、実際に本手法で要した時間についてまとめておこう。新聞データの整理・抽出、標高データの整備、解析手法の検討等で1か月程度を要した。ただし、本手法を確立したものと考え、手法の検討など試行錯誤的に行った部分を除けば、約2週間である。

東日本大震災以降,貞観地震をはじめとする過去の大規模地震に関する文献調査,地質調査などのプロジェクトが複数開始された。1章で述べたように、本研究の手法は、将来見出されるであろう、「過去の津波痕跡から過去の津波浸水域を推定する」ことにも応用することを重要な目的としている。本研究手法を用いることで、それらの調査結果を基に津波浸水域を推定することが可能となり、今後の地震・津波災害の研究に役立てば、著者らの望外の喜びである。

謝辞

編集担当委員、査読者の方々には、著者らが気がつかなかった手法の問題点など、様々な有益な意見を頂戴した。深謝申し上げます。また、本論文は、第1著者が米地球物理学連合(AGU)のFall meeting 2012で発表した内容が元になっている。旅費等でサポートしてくれた三重大学に感謝します。また、この論文の結果の一部は、第二著者が土木学会水工学委員会の災害調査団に加わって調査を行った際の成果である。

参考文献

1) 平原和朗·澁谷拓郎: 2011年東北地方太平洋沖 地震 Mw9.0: 概要,自然災害科学, Vol. 31, No.1, pp.3-22, 2012.

- 2) 警察庁:被害状況と警察措置, http://www.npa.go.jp/archive/keibi/biki/higaijokyo.pdf, 2013年1月9日閲覧.
- 3) 朝日新聞:「死因の9割,水死と判明 被災3県 の検視結果 東日本大震災」,2011年4月20日 朝刊.
- 4)原口 強·岩松 暉:東日本大震災 津波詳細 地図,古今書院,2011.
- 5) 国土地理院:10万分1浸水範囲概況図, http://www.gsi.go.jp/kikaku/kikaku60003.html, 2013年3月18日閲覧.
- 6) 国土地理院: 2万5千分1 浸水範囲概況図, http://www.gsi.go.jp/kikaku/kikaku40014.html, 2013年3月18日閲覧.
- 7)経済産業省:事業継続計画 (BCP) 策定ガイドライン, www.meti.go.jp/policy/netsecurity/downloadfiles/6 bcpguide.pdf, 2013年6月8日閲覧.
- 8) 朝日新聞:「東日本大震災理由の解雇, 急増 計画停電での拡大懸念 被災地以外でも」, 2011 年3月29日夕刊.
- 9)朝日新聞:「富士通,素早い復旧 福島・伊達市 のパソコン工場」,2011年4月15日朝刊.
- 10) 内閣府: 中央省庁業務継続ガイドライン第1版, http://www.bousai.go.jp/jishin/gyomukeizoku/pdf/ gyoumu_guide_honbun070621.pdf, 2013年1月30 日閲覧.
- 11) 阿部 壽・菅野喜貞・千釜 章:仙台平野にお ける貞観11年 (869年) 三陸津波の痕跡高の推定, 地震 第2輯, Vol.43, No.4, pp.513-525, 1990.
- 12) YOMIURI ONLINE:「此処より下に家を建てるな …先人の石碑, 集落を救う」, 2011年 3 月30日, http://www.yomiuri.co.jp/national/news/20110329-OYT1T00888.htm, 2013年 2 月 5 日閲覧.
- 13) 朝日新聞社:朝日新聞縮刷版 東日本大震 災 特別紙面集成 2011.3.11~4.12, 2011.
- 14) 読売新聞社:読売新聞 特別縮刷版 東日本大 震災 1か月の記録, 2011.
- 15) 河北新報社:河北新報 特別縮刷版 3·11東日本大震災 1ヵ月の記録, 2011.
- 16) 中日新聞・東京新聞記事検索サービス: http://ace.cnc.ne.jp/GU100, 2013年1月9日閲覧.
- 17) 国土交通省国土政策局: 国土数値情報ダウン ロードサービス, http://nlftp.mlit.go.jp/ksj/, 2013 年1月9日閲覧.
- 18) 国土交通省国土地理院:基盤地図情報サイト, http://www.gsi.go.jp/kiban/, 2013年 1 月 9 日 閲 覧.

- 19) 株式会社エコリス:基盤地図情報 標高 DEM データ変換ツール, http://www.ecoris.co.jp/ contents/demtool.html, 2013年1月9日閲覧.
- 20) 東京大学生産技術研究所地球環境工学研究グループ東日本大震災初動対応プロジェクト: http://stlab.iis.u-tokyo.ac.jp/eq_data/, 2013年1月15日閲覧...
- 21) 東北地方太平洋沖地震津波合同調査グループ: http://www.coastal.jp/ttjt/, 2013年6月9日閲覧.
- 22) 気象庁:津波について, http://www.jma.go.jp/jma/kishou/know/faq/faq26.html, 2013年 3 月19日 閲覧
- 23) 河北新報:「2度の大震災越え」, 2011年3月15 日朝刊.
- 24) GRASS GIS, http://grass.osgeo.org/, 2013年3月 15日閲覧.
- 25) 高橋大輔:数値計算, 岩波書店, 1996.
- 26) Fletcher, Y. and Mcallister, D.F.: Automatic tension adjustment for interpolatory splines, Computer Graphics and Applications, IEEE, vol.10 (1), pp.10–17, 1990.
- 27) 赤塚ら:甲府盆地における夏季夜間のヒートアイランド現象、日本ヒートアイランド学会論文集、vol.6、2011.
- Kundel, H.L. and Polansky, M.: Measurement of observer agreement, Radiology, 228, pp.303– 308, 2003.
- 29) 社会情報サービス統計調査研究室:第53話「2 人の鑑定結果-カッパ係数による一致度の計 算」, http://software.ssri.co.jp/statweb2/column/ column0810.html, 2013年3月24日閲覧.
- 30) 国際医療福祉大学保健医療学部理学療法学科下 井 研 究 室: κ 係 数 (kappa coefficient), http://shimoi.iuhw.ac.jp, 2013年 3 月24日閲覧.
- 31) 八重山地方防災連絡会:津波防災マニュアル, http://www.jma-net.go.jp/ishigaki/tmanual/home. htm, 2013年3月26日閲覧.

(投稿受理:平成25年3月27日 訂正稿受理:平成25年7月26日)